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Introduction. 
Much can be learned about the biology of a protein from its structure. Simply put, 

structure determines function. Protein structure prediction has become more and more 

important as the number of available non-redundant protein sequences grows while 

experimental structure determination methods remain expensive and time consuming. 

The field of structural prediction continues to advance, and has made some progress on 

filling the gap between the number of available sequences and structures, but there is 

much ground to be made up as the known proteome expands. 

There are two general approaches to protein structure prediction: ab initio modeling and 

template-based modeling (sometimes called comparative or homology modeling). In ab 

initio modeling, chemical and physical constraints are used to predict the most favorable 

structure for a given sequence. The main limitation for this technique is its enormous 

computational cost. Comparative techniques, however, use previously determined 

structures of proteins similar to the target as templates for building a model of the query. 

These techniques rely on the fact that proteins with similar functions (especially those 

evolutionarily related) often have similar sequences, which adopt specific structural 

conformations. The overall similarity as well as the alignment of the query and template 

sequences will obviously have an effect on the quality of the ultimate model that is 

predicted. In recent years, the line between ab initio and template-based modeling has 

become increasingly blurred, and many modeling programs feature some elements of 

both approaches for an overall increase in the accuracy of predicted protein structures. In 

this review, I will focus on template-based structural modeling techniques. I will describe 

several publicly available prediction servers that participated in the most recent Critical 

Assessment of Structural protein Prediction (CASP) experiment, CASP9, held in 2010. 



Finally, I will outline some of the main challenges to further advancement the field 

currently faces. 

Template-based modeling 

In brief, the process of template-based protein structure prediction consists of identifying 

proteins with solved structures that are homologous to the query, aligning the query to the 

template, and refining the model. In practice, the process is much more complex, and the 

actual methods employed by various prediction programs vary significantly. Notably, the 

best-ranked servers that participated in the CASP 9 experiment used distinct 

methodology to generate high-quality models. While some techniques for performing 

each step are clearly superior, others are more or less suitable for a particular 

experimental goal. The CASP 9 results show that there are multiple ways to generate 

accurate models and one method or server does not dominate all others [1]. 

Template based modeling relies on the principle that proteins with similar 3D structures 

have similar primary sequences. The accurate identification of evolutionarily or 

functionally related proteins based on sequence identity is essential to the generation of a 

near-native model using this method. Simple BLAST searches comparing sequences to 

sequences can be sufficient for very easy queries (those with very high sequence identity 

to good template proteins). More sophisticated techniques greatly improve the models 

generated for intermediate and difficult queries, where the best available templates are 

30-50% and <30% identity to query, respectively. In these cases, using alignment 

techniques comparing the query to templates using sequence profiles generated by PSI-

BLAST or HMM can result in the identification of many more true-positive homologous 

proteins and consequently much better templates [1,2]. In the past, the use of PSI-BLAST 

greatly increased the accuracy of homology modeling, and the CASP 9 organizers 

performed a rough analysis to determine the degree to which template identification has 

advanced past this technique. They created PSI-BLAST sequence profiles for each query 

in CASP 9, and found that in most cases, the servers were able to find better templates 

than those found by these profiles for up to 96% of the queries [1]. While this analysis is 



far from rigorous, what is clear is that methods for identifying templates have continued 

to improve.  

When the query has multiple types of domains, treating these domains separately can also 

significantly increase the model quality. Some automated prediction servers do this as a 

matter of course. This approach, however, increases the need for accurate domain 

identification and loop modeling and may not generate a good full-chain model. In cases 

where the sequence identity between query and template is >50%, predictions can be as 

close as ~1 Å Cα RMSD from the native structure. When the identity is between 30-50%, 

the models are rarely more than ~4 angstroms Cα RMSD from native (usually ~2-3 Å). 

Below 30% identity, template-based modeling is much less effective [2,3]. Generally, the 

more accurate the alignment is and the greater its coverage of the query, the more 

accurate the eventual model will be.  

After identification of homologous template proteins, alignment of the query can 

progress. The template used for alignment can either be assembled from multiple solved 

structures, taking the best template for each domain or region and then building the full-

length template from these fragments (called “threading”), or it can be simply the single 

best template found. Particularly in cases where the query has multiple domains or low 

homology to any known structures, threading is often preferable, but its success depends 

in large part on the accuracy and sensitivity of the initial template search. Multiple-

templated techniques have been gaining popularity and, on average, increase the accuracy 

of the models generated with them over single-templated techniques [4].  

Once the query has been aligned to a template, a 3D model can be constructed. The 

backbone of the model is built based on the template, and residue side-chain 

conformations (side-chain packing) are determined based on allowable rotamer 

conformation and sometimes optimization of free-energy states. Unaligned loops are 

modeled by either ab initio methods or using structural information from database 

searches. The accuracy of predicted loop regions is highly correlated with their length; if 

the region is less than ~6 residues, it is usually highly accurate, but becomes much more 

variable with increasing length [2]. Side-chain packing is usually very accurate, if the 

backbone alignment between the query and template is good, and is usually best within 



densely packed regions. The importance of peripheral side-chain conformations depends 

on the biological question being asked, and only for certain applications is this critical 

information. 

Refinement of the models generated from the template alignments is a necessary step, but 

can be prone to significant error and is one of the major bottlenecks in the field [5]. The 

most promising methods employ molecular dynamics to explore the conformational 

space of the sequence and find the most favored arrangement, but this requires a 

significant amount of computational power. A quicker but more deterministic method is 

to calculate the position of atoms as a probability density function based on the template 

sequence backbone and allowable bond angles and distances of the query. In either case, 

the model refinement process can easily reduce the overall accuracy of the model by 

either altering conserved and well-templated regions or failing to find optimal energy 

minima for a given set of atoms. It is hoped that further progress will be made to reduce 

the computational cost and and facilitate the accurate application of molecular dynamics 

approaches.  

Publicly Available Prediction Servers 

I-TASSER 

Initially developed and tested in 2004 during the CASP6 experiment by Yang Zhang and 

Jeffrey Skolnick [6], Iterative-Threading/ASSEmbly/Refinement (I-TASSER, URL 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/) is one of the best fully automated and 

publicly available template-based structure prediction servers, and was ranked first in the 

“server only” category of CASP7 and 8, and second in CASP9 [1]. I-TASSER has 

undergone much development since its debut in CASP6, and has become increasingly 

composite in methodology, combining sophisticated techniques for each stage of the 

model building process [6,7,8,9].  

The first step I-TASSER performs is to create a sequence profile for the query using PSI-

BLAST. The secondary structure of this sequence is then predicted using PSIPRED, a 

highly accurate secondary structure prediction server developed at the University College 



London. Using the constraints provided by PSI-BLAST and PSIPRED, the query is then 

threaded through the PDB structure library using the Local Meta-Threading-Server 

(LOMETS, URL http://zhanglab.ccmb.med.umich.edu/LOMETS/), which uses eight 

component servers (FUGUE, HHsearch, MUSTER, PROSPECT2, PPA-I, SAM, SP3, 

and SPARKS) to find the best possible templates for the query. The component servers 

generate 20 models each ranked by Z-score, for 160 total models from which the ten best 

are selected by a function that weights models based their Z-score and the component 

servers average TM-score (a global comparison score measuring how similar a model is 

to an experimental structure). 

The continuous fragments from the threading alignments are then excised from their 

respective template structures and assembled into a full-length model with un-templated 

regions built by ab initio modeling; the model is initially optimized by a replica-exchange 

Monte-Carlo simulation, guided by a knowledge-based force field combining spatial 

restraints, contact predictions, and backbone/side-chain correlations. The conformations 

from low-temperature replicas are clustered and averaged with the SPICKER algorithm 

[10] (URL http://zhanglab.ccmb.med.umich.edu/SPICKER/) and the cluster centroids are 

then submitted to a second round of threading and refinement. Finally, the lowest-energy 

structures from this second round are selected and all-atom models from the Cα  backbone 

are built primarily by optimizing H-bonding networks, and then subjected to a further 

refinement step called fragment-guided molecular dynamics (FG-MD) to further refine 

and optimize local geometry, H-bonding, and steric clashes of each atom in the model. 

As a final step, the I-TASSER pipeline annotates the finished model by matching it 

against protein function databases and provides gene ontology terms and enzyme 

classification numbers. 

HHPred/MODELLER 

The HHpred server, in 2005, was the first to use profile HMMs to identify templates for 

modeling [11]. Developed by the Söding group, HHpred in its current form (URL 

http://toolkit.lmb.uni-muenchen.de/hhpred) was ranked highest in the “server only” 

category in CASP 9 [1]; aside from this, the main advantage of HHpred is its vast 

increase in speed relative to other methods without reducing accuracy – where I-TASSER 



(and others) takes on the order of days, whereas HHpred returns structures in mere 

minutes [12]. From the point of view of attaining the goal of generating a structure for 

every known protein, this method is clearly superior; however, HHpred does not include 

any alternative alignments, and relies on the separately developed MODELLER program 

to actually generate the model. The HHpred alignment, once generated, is used to build 

several models using the fully automated MODELLER program, and the best is chosen 

as the final model. 

Several different versions of HHpred were run in CASP9, but their results were identical 

and their methods very similar [1,12], so the method will be discussed in general. First, a 

query sequence alignment is performed by iterative HMM searches against a non-

redundant database, and an HMM profile is built. A database containing HMMs for a 

subset of PDB sequences with known structures is then searched with the query HMM 

using HHsearch, an algorithm for pair-wise alignment of HMMs and ranking of 

alignments. A trained neural network is then used to predict the TM-score of the model 

that would be built by each HMM alignment, and the alignments are re-ranked based on 

this. Then, from the top-ranked alignments for each segment of the query, a full-length 

alignment is built for 3D structure prediction using MODELLER. 

The MODELLER program (available stand-alone at http://salilab.org/modeller/) is used 

by HHpred to build 3D models based on the profile-profile HMM alignments generated 

in the first phase. The 3D structures are built by satisfying the spatial restraints of the Cα- 

Cα bond lengths and angles, the dihedral angles of the side-chains, and van der Waals 

interactions. These restraints are calculated from the template structures, and forms a 

model that represents the most probable conformation of the query based on homologous 

proteins [13]. MODELLER is generally considered a very good structural prediction 

program, but it does not model side-chain conformations very well given their inherently 

higher degree of positional uncertainty.  

Robetta 

The ROBETTA server was ranked fifth in the “server only” category of CASP9 (as 

Baker-Rosetta server) behind HHpred, I-TASSER (as Zhang-server), QUARK (also out 



of the Zhang lab) and Seok-server, a server that is not publicly available based out of 

Korea. ROBETTA combines the ROSETTA method of all-atom model refinement to 

their lowest free-energy state with a meta-server for template identification and alignment 

[14].  The query sequence is first parsed into domains using the Ginzu protocol, 

developed by David Baker’s group [15], which uses BLAST, pairwise HMM searching, 

and PSI-BLAST to identify domains and their discrete boundaries. Unlike I-TASSER and 

HHpred, if ROBETTA finds multiple domains in a query, it will model them separately 

and then assemble those models into a full chain later, which is a major difference in the 

techniques. Once the domains have been parsed and suitable templates have been 

identified, multiple alignments are generated by several methods (HHSEARCH, 

Compass, and Promals) and the best are selected for modeling. Loop regions are 

assembled from fragment libraries and optimized to fit the template.  

The core of ROBETTA is in the model refinement process, which uses Monte Carlo 

simulations to find low-energy conformations of a given model. Each attempted move in 

these simulations consists of random backbone torsion angles, optimized side-chain 

rotamer conformation and minimization of the disagreeable backbone and side-chain 

angles. For easy queries, a single best template is often easy to find using this method, 

which employs BLAST for just this reason. But when the queries are more difficult, there 

are often multiple similarly ranked templates. In this case, ROBETTA performs multiple 

randomly seeded energy-minimizing Monte Carlo simulations to determine the template 

that results in the lowest energy conformation of the query. This adds a large 

computational burden to harder targets, which is the most significant drawback of the 

ROBETTA server. 

Progress and Obstacles  

Template selection 

Significant advances have been made in template selection and building using 

sophisticated techniques such as PSI-BLAST and HMM profile-profile alignments, but 

little progress has been made since they became common. In the analysis of the CASP 9 

results, it was found that even the best methods (mufold and HHpred) were only able to 



produce a model better or even as good as the “single best available template” in the PDB 

for at most ~30% of queries, and the majority of prediction servers performed wors than 

this [1]. However, there was at least one model submitted for each target that showed 

improvement over the best available template for roughly two thirds of the CASP 9 

targets [1]. Additionally, the overall performance of servers in CASP 9 exceeded that of 

CASP8 only on targets of intermediate difficulty [16]. Optimistically, this can be seen as 

an increase in the difficulty of the targets in CASP9, but this is hard to show. Despite 

recent advances in template selection, though, there is still further progress to be made in 

this critical first step of homology modeling.  

Model building 

While the quality of models produced in the CASP experiments has consistently 

improved between rounds, progress has slowed recently [16]. In most cases, the 

improvement over the best available template is due to correct modeling of unaligned 

regions, most often by ab initio methods, which are quite accurate for short targets. It is 

clear that the potential for improvement over the best template is greater for those queries 

classified as “hard” targets, that is, those with low homology to available templates and 

more unaligned portions. Overall, for those queries with at least 15 unaligned residues 

35% of these residues were correctly modeled (within 3.8 Å of the experimental 

structure) regardless of target difficulty [16]. The overall quality of template-based 

models is most heavily influenced by the degree of alignment of the query with the best 

available template. Directed development and expansion of the templates available in the 

PDB could have an enormous impact on the overall applicability of homology modeling.  

Model refinement 

One major obstacle of current homology modeling techniques lies in the choice of model 

refinement process. Often, the refinement process decreases the accuracy of the model by 

altering highly conserved or well-templated regions.  This could also be contributing to 

the finding that for each server, only the minority of queries were modeled more 

accurately than if the best template was simply copied. It may be that the servers are in 

fact finding the best template, but then refining “away” from the native state of the query. 



Given the organization of the CASP experiments, this hypothesis has thus far been un-

testable, but could easily be tested if the initial templates found by each server could be 

compared with the final model and the experimental structure. It would be expected that, 

if the refinement process were increasing accuracy, the final model would be closer to the 

experimental structure than the template. Clearly, further testing and development is 

necessary for the molecular dynamics techniques to meet their potential, not least because 

HHpred, which uses primarily quickly calculated positional likelihoods in refinement, 

out-performed other techniques which used very time-consuming and costly simulations 

to refine their models. 

Quality/error assessment 

For several rounds now, CASP experiments have included an explicit category for model 

quality assessment. In this experiment, the global and per-residue error values for each 

model as determined by quality assessment methods are compared with the values as 

determined by superposition of each model with the experimental structure. In CASP 9, 

there were several methods for which the correlation between these values approached 

perfection; however, there are several important caveats to this apparently very 

encouraging result. First, these are separate from actual structure prediction methods, the 

vast majority of which are not able to provide realistic confidence measures. Almost none 

are able to provide accurate models and good confidence measures at the same time. 

Second, the winning quality assessment methods all used clustering techniques, looking 

at multiple models from different servers, to calculate the quality of each individual 

model. In practice, it may not always be useful or feasible to obtain many models in order 

to calculate their quality. The performance of single-model quality assessments was 

rather poor relative to the clustering methods. An additional consideration is that if the 

low-quality models are removed from the assessment of the clustering methods, then they 

perform significantly worse, indicating that when the available models are of similar 

quality it becomes much more difficult to determine their absolute quality as compared to 

the experimental structure [17]. Most structural prediction methods do not provide a 

realistic quality assessment relative to native, and even the best stand-alone quality 

assessment programs need significant improvement for some situations [17,18].  



Currently, even when provided with a predicted model the confidence measures should 

not be entirely trusted, but rather one should rely on more absolute measures of realistic 

bond angles, lengths, etc., to judge model quality. Additionally, use of more than one 

prediction method is recommended, and at all times the biology of the particular protein 

should always be kept in mind. 

Conclusion 

Template-based modeling techniques have become highly sophisticated, and in some 

cases can generate extremely accurate models from the primary sequence of a protein. 

The recent advances can largely be attributed to a more integrative approach to the 

problem of structure prediction, particularly with respect to template selection and 

threading as can be seen by the dominance of meta-servers in this step. The further 

integration of the most sophisticated and effective methods for each step of the process is 

necessary for the field to grow further. In particular, one of the most critical areas for 

improvement is in assessment of the accuracy of a model. If the models generated are to 

be useful for biologists, they must be trustworthy, and currently each model must be 

carefully scrutinized before it can be deemed reliable. The directed development of the 

available structural templates could increase the number of queries that can be modeled 

with confidence, and while this would be good for biology as a whole it would not 

advance the field of protein structure prediction explicitly, unless the entire goal is to 

generate a structure for every sequence known. I would argue that while this is a useful 

and important goal, the issue of how to “build” a protein from first principles is a more 

interesting and ultimately more rewarding – and yet, even with good templates it is still 

no trivial matter to model a folded protein. As the lines between ab initio and template-

based modeling grow, it will be interesting to see where the field leads next. With 

CASP10 just around the corner in 2012, we may not have to wait long for at least part of 

an answer.  
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